Anwendung der Logarithmen in der Geodäsie

Ein kurzer Überblick mit Beispielen

Rainer Heer

1. Einleitung und Grundlagen

1.1 Geschichte der Geodäsie

Das Wort Geodäsie stammt aus dem Griechischen und kann im weitesten Sinne mit dem Begriff Erdteilung übersetzt werden. In diesem Verständnis ist darunter der gesamte Bereich des Vermessungswesens zu verstehen.

Die Ursprünge gehen weit bis vor Christi Geburt zurück und bestanden in der damaligen Notwendigkeit (z. B. Nilüberschwemmungen im alten Ägypten, ca. 1700 v. Chr.), Landflächen neu zu erfassen bzw. aufzuteilen, Grund- und Eigentumsgrenzen zu definieren und Landesgrenzen zu dokumentieren.

In diesem Zusammenhang war es auch zweifellos notwendig, zur Errichtung von größeren Gebäuden (z. B. Pyramiden) ebenfalls Vermessungen durchzuführen.

Darüber hinaus ergab sich im Rahmen der Beschäftigung mit den Gestirnen das Interesse zur Bestimmung der Erdfigur bzw. Erdgestalt. Als Beispiel sei hier die Bestimmung des Erdumfangs durch den griechischen Gelehrten Eratosthenes um ca. 250 v. Chr. genannt, auf die an anderer Stelle noch näher eingegangen wird.

Nach diesen Beispielen zu den Anfängen kann nach der klassischen Definition von Friedrich Robert Helmert (1843 – 1917), die Geodäsie als die Wissenschaft von der Ausmessung und Abbildung der Erdoberfläche betrachtet werden.

Er teilte die Geodäsie in folgende Bereiche ein:

- Höhere Geodäsie,
 - auch physikalische, mathematische, astronomische und theoretische Geodäsie, wie z. B. Erdmessung, Landesvermessung und Astronomie und
- Niedere Geodäsie, auch allgemeine, angewandte und praktische Geodäsie, genannt.

Daraus ergeben sich die grundlegenden Aufgaben der Geodäsie:

- Erdmessung
 - Bestimmung und Darstellung der Erdfigur mit äußerem Erdschwerefeld
 - Schaffung gültiger Bezugssysteme für Lage, Höhe und Schwere
 - Bereitstellung geometrischer und physikalischer Erdmodellparameter
- Landesvermessung
 - Erstellung eines Lage-, Höhen- und Schwerefestpunktfeldes auf Grundlage der Erdmessung
 - Herstellung und Laufendhaltung von Kartenwerken.

- Detailvermessung
 - Verdichtung der Festpunktfelder zur Aufmessung lokaler Phänomene
 - Kataster- und Liegenschaftsvermessung
 - Gebäudevermessung
 - Vermessung der Eigentums- und Landnutzungsgrenzen
 - Bereitstellung von Liegenschaftskarten
 - Topographische oder photogrammetrische Vermessungen
 - Erfassung des Geländereliefs für die kartographische Darstellung
 - Ingenieurvermessung
 - Absteckung, Errichtung, Überwachung von Bauwerken und Maschinen.

Damit lässt sich dann die endgültige Definition wie folgt angeben:

Als Vermessungskunde oder Geodäsie bezeichnet man die Lehre von der Ausmessung größerer oder kleinerer Teile der Erdoberfläche und ihre Darstellung in Verzeichnissen, Karten und Plänen [5].

1.2 Bezugsflächen

Da die Figur der Erde mit ihrer Oberfläche so unregelmäßig ist, dass eine geschlossenen mathematische Beschreibung unmöglich erscheint, muss eine geometrische Grundform gefunden werden, die dagegen mathematisch beschreibbar ist und auf die sich lokale Gegebenheiten beziehen lassen.

Eine Bezugsfläche bzw. Referenzfläche ist eine mathematisch, physikalisch oder mittels vorhandener Festpunktfelder definierte Fläche, auf die sich Lagekoordinaten, Höhen oder Schwerepotentiale von Punkten beziehen [5].

Als Ersatzfläche für relativ kleine Messgebiete kann die Erde bzw. ein Teil der Erde als eine Ebene angesehen werden. Seit der Feststellung, dass die Erde eine Kugel ist, wird immer versucht, diese Figur näher zu beschreiben. Die Rotation der Erde führt an den Polen zu einer Abplattung, so dass sich die Erdgestalt durch ein Rotationsellipsoid mit kleiner und großer Halbachse beschreiben läßt.

Das Bezugsellipsoid (Referenzellipsoid) ist eine mathematisch-geometrische Ersatzfläche für die Erde, die durch die Rotation einer Ellipse um ihre Achse entsteht und durch die Angabe der großen und kleinen Halbachse eindeutig definiert werden kann [5].

Dabei unterscheidet man zum einen ein mittleres Erdellipsoid, bei dem die Rotationsachse mit der Erdachse identisch ist und die Erdfigur als Ganzes ersetzt und zum anderen ein Rotationsellipsoid, bei dem die Ellipsoidparameter so gewählt sind, dass sie sich bestmöglich einem gegebenen Gebiet anpassen.

Im Gegensatz zu dieser rein geometrisch festgelegten Erdfigur begründet sich die Geodäsie auch auf physikalische Annahmen, die ein Abgehen von der idealen Erdfigur erforderte. Wegen der ungleichmäßigen Massenverteilung im Erdinnern kann die Erdfigur auch durch eine Äquipotentialfläche des Erdschwerefeldes definiert werden.

Die Schwerkraft ist die aus der Gravitation der Erde bzw. der übrigen Himmelskörper sowie der Zentrifugalkraft der Erde resultierende Kraft [5].

Die weiteren Betrachtungen führten dann zum Geoid als Niveaufläche.

Das Geoid ist eine Niveaufläche des von verschiedenen Einflüssen (z. B. Erdgezeiten, Luftdruckschwankungen) befreiten Erdschwerefeldes in Höhe des mittleren Meeresniveaus [5].

Die Abbildung 1 zeigt die verschiedenen geodätischen Bezugsflächen.

Bedeutungen:

x, y, z = Koordinatenachsen

1.3 Geodätische Koordinatensysteme

Je nach Aufgabenstellung wird i.d.R. ein Messobjekt im allgemeinen durch einzelne charakteristische Punkte idealisiert, die für seine geometrische Beschreibung als besonders geeignet erscheinen und damit als repräsentativ gelten können. Diese Punkte müssen aber dann zusätzlich in ihrer relativen Lage zueinander festgelegt sein. Dazu lassen sich ein-, zwei- oder dreidimensionale Koordinatensysteme definieren.

Ein Koordinatensystem ist ein aus Koordinatenachsen (bzw. - Richtungen) bestehendes geometrisches System, das eine eindeutige Zuordnung der einzelnen Punkte erlaubt [5].

Dabei unterscheidet man Koordinatensysteme auf der Kugel oder dem Rotationsellipsoid und Koordinatensystemen in der Ebene (Abbildungen 2, 3 und 4).

Bedeutungen: P = Punkt X, Y, Z = dreidimensionale kartesische Koordinaten $\varphi, \lambda, h = dreidimensionale ellipsoidische Koordinaten (Breite, Länge, Höhe)$

Abb. 2: Dreidimensionale geodätische Koordinatensysteme

Bedeutungen:

P = Punkt

y, *x* = *rechtwinklige Koordinaten*

t = Richtungswinkel oder Azimut

I, II, III, IV = Quadranten

Bedeutungen: P = Punkt H, R = Hochwert, Rechtswert N, E = North, East

Beim Durchführen von Vermessungsarbeiten müssen die Koordinatensysteme in Bezug zum Messobjekt eindeutig festgelegt sein. Dazu gehören der Koordinatenursprung, die Orientierung und der Massstab eines Koordinatensystems.

Den zugehörigen Parametersatz bezeichnet man auch als Bezugssystem oder Referenzsystem.

Als ein geodätisches Bezugssystem wird eine einheitliche objektbezogene Festlegung und Orientierung des Koordinatensystems für Zwecke einer Objektvermessung bezeichnet.

Dabei unterscheidet man lokale und globale Bezugssysteme. Im Rahmen von einfachen geodätischen Aufnahmen entstehen häufig lokale Koordinatensysteme, die sowohl polar als auch rechtwinklig definiert sein können.

Im Rahmen der technischen Möglichkeiten des 19. und 20. Jahrhunderts wurde für die Festlegung des Bezugssystems für Lagevermessungen i.d.R. die Zentralpunktmethode gewählt, siehe Abbildung 5.1. Ausgehend von einem Zentralpunkt, dessen astronomische Breite, Länge und Azimut mit hoher Genauigkeit durch astronomische Verfahren bestimmt wurde, schuf die Landesvermessung ein das entsprechende Gebiet überspannendes Netz von Lagefestpunkten, die dann den Bezugsrahmen bildeten (z.B. Bezugssystem Rauenberg).

Bedeutungen: A = astronomisches Azimut $\varphi, \lambda = Breite, Länge$

Abb. 5.1: Zentralpunktmethode

In der Praxis wurde das Lagefestpunktfeld nach Orientierung im Zentralpunkt nach geographisch Nord (Meridian) und einer Massstabsfestlegung durch eine Basismessung mit Basisvergrößerungsnetz in vier Verdichtungsstufen als trigonometrisches Netz angelegt. Die Punkte 1. Ordnung hatten einen Punktabstand von etwa 30 km, die Punkte der 2. Ordnung etwa 10 km. Die Punkte der 3. und 4. Ordnung bildeten die letzte Verdichtungsstufe, so dass etwa auf 5 km² ein trigonometrischer Punkt (TP) vorhanden sein sollte, siehe Abbildung 5.2.

Abb. 5.2: Lagefestpunktfeld der Landesvermessung

Damit ist ein konventionelles regionales Lagebezugssystem definiert. Im Gegensatz zu dieser rein geometrischen Festlegung der Lage beziehen sich die geodätischen Höhenmessungen unter Berücksichtigung physikalischer Annahmen auf das Geoid, das in Höhe des mittleren Meeresniveaus einer Äquipotentialfläche entspricht. Ein über längere Zeit gemittelter Pegelstand wird dann als Ausgangshöhe angenommen. I.d.R. wird dieser Höhenwert zu Null definiert. Von diesem Punkt aus werden dann die Höhennetze durch Nivellement geschaffen (z. B. Amsterdamer Pegel), siehe hierzu Abbildung 6.

Bedeutungen: H = Meereshöhe

Abb. 6: Vertikales Bezugssystem

Sowohl beim Lage- als auch beim Höhenfestpunktfeld wurde über entsprechende Verdichtungsstufen nach dem Prinzip "vom Großen ins Kleine" gearbeitet.

Abgelöst wurde diese konventionelle Methode unter Nutzung satellitengeodätischer Messmethoden durch die Definition eines globalen, erdfesten Bezugssystems, welches geozentrisch gelagert und dreidimensional kartesisch ist, siehe Abbildung 7.

- Koordinatenursprung (Massenmittelpunkt der Erde)
- Z-Achse (mittlere Drehachse der Erde)
- XZ-Ebene (definiert durch die Z-Achse und einem ausgesuchten Punkt auf der Erde, z. B. Sternwarte von Greenwich)
- Y-Achse(Drehung der X-Achse um 90 Grad gegen den Uhrzeigersinn).

Mit Hilfe von Geoidmodellen kann dann der Unterschied zwischen der Höhenreferenzfläche (Äquipotentialfläche) und der ellipsoidischen Höhe angegeben werden. Abschließend ist damit ein vollständiges 3-D-Erdmodell definiert.

Bedeutungen: X,Y, Z = Koordinatenachsen

Bedeutungen: P = Punkt h = ellipsoidische Höhe N = Geoidundulation oder Geoidhöhe G = GeoidQG = Qasigeoid

Damit sind die entscheidenden Grundlagen gelegt. Sie dienen dem Verständnis zur Erläuterung der Anwendung der Logarithmen in der Geodäsie für z. B. lokale und regionale Berechnungen unter Berücksichtigung konventioneller Methoden des 19. Jahrhunderts.

2. Logarithmische Berechnungen in der niederen Geodäsie

2.1 Koordinatenrechnungen und Azimutrechnungen

Bei der Anwendung von Logarithmen in der Geodäsie ist anzumerken, dass diese in erster Linie die Berechnung insbesondere von häufig wiederkehrenden Rechenaufgaben vereinfachen und beschleunigen sollten. Dabei geschieht dies in den meisten Fällen durch die Vereinfachung von Multiplikations- bzw. Divisonsaufgaben durch Addition bzw. Subtraktion in der logarithmischen Rechnung.

Im ersten Abschnitt der Grundlagen bzw. Geschichte der Geodäsie wurde in Abb. 3 das einfache, rechtwinklige Koordinatensystem dargestellt. In diesem ist die Lage eines Punktes durch seine rechtwinkligen Koordinaten bestimmt. Durch Hinzufügen der algebraischen Vorzeichen + und – ist die Lage im jeweiligen Quadranten (I, II, III, IV) bzw. auch auf den Koordinatenachsen eindeutig.

Die Richtung eines vom Koordinatenursprung *O* ausgehenden Strahls zum Punkt *P* (siehe Abb. 3) ist bestimmt durch den Winkel *t*. Er gibt die Drehung der +*x*-Achse von +*x* über +*y* zum Strahl *OP* an. Dieser Winkel wird auch Richtungswinkel genannt. Vielfach wird er auch als ebenes Azimut bezeichnet, wenn keine Verwechslung mit dem Azimut der Erdmessung und Astronomie zu befürchten ist. Er liegt damit zwischen den Grenzen θ^{\bullet} und 350° (Altgrad) bzw. θgon und 400gon (Neugrad).

In der Landesvermessung ist es üblich, dass das Koordinatensystem mit +x-Achse nach Norden und mit der +y-Achse nach Osten ausgerichtet ist.

Die Abbildung 9 zeigt die im damaligen Deutschen Reich vorhandenen rechtwinkligen Koordinatensysteme, die vielfach auch eine größere Ausdehnung besaßen. Unterschieden wird dabei in die 40 Koordinaten-Nullpunkte der preußischen Katasterverwaltung, die in der Tabelle 1 aufgeführt und mit den entsprechenden Nummern in der Abbildung 9 zu finden sind.

Für den Fall größerer Ausdehnung darf die Erdkrümmung nicht vernachlässigt werden. In kleineren Bereichen dieser Systeme war es allerdings unschädlich, diese als ebene Koordinaten zu behandeln.

Nr.	Coordinatennullpunkt	Breite	Länge	Geltungsbereich
1.	Kucklingsberg	54°27'36,803"	39°37'18,354"	Gumbinnen
2.	Paulinen	54°17'21,157"	38°23'59,356"	Königsberg
3.	Markushof	54°03'31,728"	37°02'24,369"	Königsberg
4.	Thurmberg	54°13'31,874"	35°47'32,499"	Danzig
5.	Kauernik	53°23'21,593"	37°15'53,180"	Danzig
6.	Thorn	53°00'42,535"	36°16'26,117"	Marienwerder
7.	Heinrichsthal	53°42'46,411"	35°09'48,364"	Marienwerder
8.	Gollenberg	54°12'30,858"	33°53'46,444"	Köslin, Marienwerder
9.	Gnesen	52°32'17,535"	35°15'40,220"	Bromberg
10.	Josephsberg	51° 59'15,676"	33°52'01,598"	Frankfurt a. O., Bromberg, Posen
11.	Schroda	52°13'52,945"	34°56'40,635"	Posen
12.	Pschow	50°02'3I,475"	36°03'45,998"	Oppeln
13.	Rummelsberg	50°42'12,682"	34°46'44,421"	Breslau
14.	Gröditzberg	51°10'41,496"	33°25'40,576"	Liegnitz
15.	Kaltenborn	52°55'44,5335"	32°19'43,6659"	Frankfurt a. O.
16.	Bahn	53°O6'06,645"	32°22'05,203"	Stettin
17.	Greifswald	54°05'49,159"	31°02'43,705"	Stralsund
18.	Müggelsberg	52°25'07,134"	31°17'37,933"	Berlin, Potsdam
19.	Götzerberg	52°26'14,135"	30°23'43,787"	Potsdam
20.	Torgau	51°34'	30°40'	Merseburg
21.	Burkersroda	51°10'34,84"	29°18'25,85"	Merseburg
22.	Inselsberg	50°51'07,69"	28°03'00,31"	Kassel
23.	Magdeburg	52°08'	29°19'	Potsdam, Lüneburg
24.	Ostenfeld	54°28'12,675"	26°54'02,798"	Schleswig
25.	Rathkrügen	53°49'06,217"	27°42'31,926"	Schleswig
26.	Bungsberg	54°12'39,983"	28°23'34,911"	Schleswig
27.	Celle	52°37'32,924"	27°44'44,733"	Hannover
28.	Kaltenborn	51°47'46,545"	27°56'24,362"	Hildesheim, Magdeburg
29.	Silberberg	53°43'52,787"	26°43'17,781"	Stade, Hannover
30.	Windberg	52°52'51,566"	25°11'39,376"	Aurich, Osnabrück
31.	Hermannsdenkma1	51°54'47,182"	26°30'16,647	Minden
32.	Münster	51°57'56,016"	25°17'14,372"	Münster
33.	Bochum	51°29'01,2540"	24°53'16,0590"	Münster
34.	Homert	51°15'52,27"	25°46'18,39"	Arnsberg
35.	Kassel	51°19'06,509"	27°O9'56,956"	Kassel
36.	Schaumburg	50°20'23,63"	25°38'29.61"	Wiesbaden
37.	Fleckert	50°11'15,581"	00°30'26,474"	Koblenz
38.	Köln	50°56'33,346"	00°08'22,715"	Köln, Düsseldorf
39.	Langschofs	50°40'02,667"	00°48'33,185"	Aachen
40.	Rissenthal	49°28'40,8762"	24°25'31,1433"	Trier

Tab. 1: Koordinatennullpunkte der preußischen Katasterverwaltung

Abb. 9: Koordinatensysteme im damaligen Deutschen Reich

Die Abbildung 10 zeigt eine in den Jahren 1883 und 1884 angelegte Triangulation in Hannover, die im althannoverschen Gauß'schen Koordinatensystem mit dem Ursprung in Göttingen definiert ist. Diese wurde zu Schulzwecken unter Leitung von Prof. Dr. W. Jordan, der auch Logarithmentafeln herausgegeben hatte, von Studierenden ausgemessen.

Abb. 10: Triangulierung von Hannover 1883/84

Somit können nun die Grundformeln der in der Vermessungspraxis täglich vorkommenden Koordinaten und Azimut-Rechnungen angegeben werden. Zur Veranschaulichung sind in der Abbildung 11 zwei Punkte P und P' durch ihre Koordinaten y, x und y', x' gegeben.

Abb. 11: Koordinaten- und Azimutrechnung

Damit ergeben sich folgende Beziehungen und Definitionen

Strahl PP' hat das Azimut
$$t \Leftrightarrow (PP')$$

Strahl P'P hat das Azimut $t' \Leftrightarrow (P'P)$
 $\Rightarrow t' = t \pm 180^{\circ} (Altgrad)$
 $\Rightarrow t' = t \pm 400 gon (Neugrad).$
(1)

Aus der Abbildung 11 lassen sich nun zwei Gleichungen entnehmen

$$y'-y = a \cdot sint = PP' sin(PP')$$

$$x'-x = a \cdot cost = PP' cos(PP'),$$
(2)

die nach Umkehrung der Strahlenrichtung auch folgende Form annehmen können

$$y - y' = a \cdot sint' = P'P sin(P'P)$$

$$x - x' = a \cdot cost' = P'P cos(P'P).$$
(3)

Damit kann die erste Aufgabe der Koordinatenbestimmung mit Hilfe der Entfernung a und des Richtungswinkels t gelöst werden. Die Beispiele sind aus der Abbildung 10 des Triangulationsnetzes von Hannover entnommen.

Aufgabe 1

Gegeben sind die Koordinaten des Punkte Technische Hochschule, Eiserne Platte E sowie die Entfernung von a zur Waterloo-Säule und der Richtungswinkel bzw. das Azimut t. Eine kleine Umformung von (3) liefert

$$y' = y + a \cdot sint$$

$$x' = x + a \cdot cost.$$
(4)

die gesuchten Koordinaten des Punktes Waterloo-Säule.

Nach Angabe der gegebenen Werte

$$y_E = -15266,91m$$

 $x_E = +95002,25m$
 $a = 1851,02m$
 $t = 160°46'46''$

lässt sich folgendes Rechenschema konstruieren

log a	3.267 411	log a	3.267 411
log sin t	9.517 467	log cos t	9.975 091n
log a sin t	2.784 878	log a cos t	3.242 502n
$a \sin t = (y' - y')$	+609,37	$a \cos t = (x' - x)$	-1747,84
y' Waterloo-Säule	-14657,54m	x' Waterloo-Säule	+93254,41m

und damit die Lösung finden.

Aufgabe 2

Als zweite Aufgabe soll nun das Azimut von P nach P' und die Entfernung a = (PP') berechnet werden. Aus der Abb. 11 lassen sich die Gleichungen

$$tant = \frac{y' - y}{x' - x}$$
(5.1)

und

$$a = \frac{y' - y}{\sin t} \quad oder \ a = \frac{x' - x}{\cos t} \tag{5.2}$$

entnehmen, wobei in den Gleichungen von 5.2 die Nebenbedingung besteht, dass die Entfernung *a* stets positiv aus diesen Gleichungen hervorgehen soll. Damit muss *sin t* das Vorzeichen von y'-y und *cos t* das Vorzeichen von x'-x haben.

Dazu dient folgende mechanische Regel

a liegt im Quadranten	Ι	II	III	IV
Vorzeichen (y'-y) -Zähler-	+	+	-	-
Vorzeichen (x'-x) –Nenner-	+	-	-	+

Aus Aufgabe 1 sind die Koordinaten der Punkte Technische Hochschule, Eiserne Platte E und Waterloo-Säule gegeben. Gesucht ist jetzt das Azimut bzw. der Richtungswinkel und die Entfernung von der Technischen Hochschule zur Waterloo-Säule. Mit dem folgendem Rechenschema erhält man für das Azimut

Waterloo-Säule	yʻ=-14657,54m	<i>x</i> '=+93254,41 <i>m</i>
Technische Hochschule, E	<i>y</i> =- <i>15266</i> ,81 <i>m</i>	<i>x</i> =+95002,25 <i>m</i>
Differenzen	y'-y=+609,37m	x`-x=-1747,84m
log(y'-y)	2.784881	
log(x'-x)	3.242502n	
log tan t	9.542379n	

unter Berücksichtigung der Vorzeichen der Koordinatenunterschiede und des sich daraus ergebenden Quadranten dann *t* endgültig. Dabei ist *t* als $90^{\circ}+t^{\circ}$ anzusehen, wenn *t*^{\circ} ein spitzer Winkel ist. Mit dem Wert 9.542379n erhält man aus der Cot-Spalte der Logarithmentafel für *t*^{$\circ}=70^{\circ}46'46''$ und damit</sup>

 $t = 90^{\circ} + t' = 160^{\circ}46'46''$

Die Weiterrechnung mit den beiden Formeln nach (5.2) liefert

а	1851,04m	а	1851,02m
log a	3.267414	log cos t	3.267411
log sin t	9.517467	log cos t	9.975091n
log(y'-y)	2.784881	log(x'-x)	3.242502n

dann die gewünschte Entfernung, wobei augenscheinlich die Resultate nicht genau übereinstimmen. Jordan sieht das zweite Ergebnis als das schärfere an und empfiehlt die Berechnung der Hypotenuse *a* aus der jeweils größeren Kathete unter Berücksichtigung der Anordnung der Logarithmen der trigonometrischen Funktionen in den entsprechenden Tafeln für Winkel größer oder kleiner von 45°, wie die nachstehenden Bedingungsgleichungen aufzeigen.

$$y'-y < x'-x \Rightarrow cost oder y'-y > x'-x \Rightarrow sint$$

Prof. Dr. W. Jordan gibt an dieser Stelle seines Lehrbuches [4] in Bezug auf die Verwendung von Logarithmentafeln die Empfehlung, dass zu Berechnungen in der Feldund Landmessung eine fünfstellige und eine sechsstellige logarithmischtrigonometrische Tafel ausreichend ist. Eine siebenstellige Tafel ist hier selten erforderlich. Zusätzlich kann eine vierstellige Tafel für kleine Nebenrechnungen sehr nützlich sein. Während es an fünfstelligen Tafeln keinen Mangel gibt, empfiehlt er die eine bequeme sechsstellige Tafel für alte Teilung, nämlich die *Logarithmischtrigonometrischen Tafeln mit sechs Decimalstellen von Bremiker, Berlin.* Weiter führt er aus, dass vor 10 bis 20 Jahren siebenstellige logarithmische Rechnungen allgemein üblich waren, auch in Fällen, wo 6 und 5 Stellen ausreichten. Die Reaktion gegen solche Ziffernverschwendung ist jetzt aber teilweise ins Gegenteil umgeschlagen und es wird fünfstellige Rechnung teilweise zu sehr gepflegt. Er gibt den Rat, in der Rechnung eine Stelle mehr zu führen als der sachlichen Genauigkeit der einzelnen Zahl entspricht und hält daher z. B. bei Triangulierungsaufgaben eine mindestens sechsstellige Rechnung für unabdingbar.

Für diese häufig wiederkehrenden Berechnungen sind entsprechende Rechenformulare sehr nützlich. Die Abbildung 12.1 zeigt ein von Prof. W. Jordan entwickeltes Rechenschema für die Ermittlung von Azimut und Strecke, wie sie in den Aufgaben 1 und 2 behandelt wurde.

Abb. 12.1: Rechenformular zur Ermittlung von Strecke und Azimut

Die Abb. 12.2 zeigt ein Originalformular, welches bei einer Vermessungsübung im Raum Hameln um 1903 eingesetzt wurde.

In den Aufgaben 1 und 2 wurden die Grundformeln zur Koordinatenberechnung behandelt. In den folgenden Beispielen werden als Weiterführung die Grundaufgaben der Triangulierungsrechnung dargestellt.

Aufgabe 3

Nach Abbildung 13 sind die beiden Punkte *A* und *B* durch ihre Koordinaten gegeben. In dem sich durch den Punkt *P* ergebenden Dreieck *ABP* wurden die Winkel α, β, γ oder wenigstens α, β gemessen. Gesucht sind die Koordinaten *y*, *x* des Punktes *P*. Sind in dem Dreieck *ABP* alle drei Winkel gemessen, so wird ihre Summe $\alpha+\beta+\gamma$ wegen der unvermeidlichen Messungsfehler nicht genau 180° ergeben. Der sich ergebende Widerspruch wird gleich auf alle drei Winkel verteilt.

Abb. 13: Grundaufgabe der Triangulierung, Berechnungen im Dreieck

Die trigonometrische Berechnung beginnt mit der Ermittlung des Azimutes und der Länge der Basis bzw. Seite AB = c nach den in den Aufgaben 1 und 2 angegebenen Formeln.

Azimut:
$$tan(AB) = \frac{y_b - y_a}{x_b - x_a}$$
(6)

$$AB = c = \frac{y_b - y_a}{\sin(AB)} oder = \frac{x_b - x_a}{\cos(AB)}$$
(7)

Mit Hilfe des Sinus-Satzes ergeben sich die beiden weiteren Seiten des Dreiecks zu

$$AP = b = \frac{c}{\sin\gamma} \sin\beta \text{ und } BP = a = \frac{c}{\sin\gamma} \sin\alpha.$$
(8)

Mit dem Azimut (AB) der Basis AB und den Winkeln α und β finden sich die Azimute der beiden anderen Seiten zum Punkt P.

$$(AP) = (AB) - \alpha$$

 $(BP) = (BA) + \beta = (AB) \pm 180^{\circ} + \beta$

Nach den Grundgleichungen in (4) ergeben sich dann die Koordinaten von P zweifach.

$$von A aus: y_p = y_a + AP sin(AP) \quad x_p = x_a + AP cos(AP)$$

$$von B aus: y_p = y_b + BP sin(BP) \quad x_p = x_b + BP cos(BP)$$

Bevor die Berechnung durchgeführt wird, hier die gegebenen Messgrößen und Koordinaten.

Messgrößen

	Gemessene Winkel			Ausgeglichene Winkel
(α)	40°27'23"	Punkt A	α	40 • 27'19"
()	70°36'24"	Punkt P	γ	70 • 36'20"
(β)	68°56'25"	Punkt B	β	68•56'21"
	180°00'12"			180*00'00''

Koordinaten

Punkt B	y_b	+5480,26m	x_b	-63843,22m
Punkt A	Уа	+3418,45m	x_a	-64524,94m
Coordinaten-Differenzen	Уь-Уа	+2061,81m	x_b - x_a	+681,72m

Dann ergibt sich das logarithmische Rechenschema.

Azimute (AB), (BA), (AP) und (BP) sowie Dreiecksseiten AP, BP

		$log(y_b-y_y)$	3.314249		
		log sin(AB)	0.022529		
	oder	log cos(AB)			
		$log(x_b-x_a)$	2.833606		
(AB)=	71•42'14"	log tan(AB)	0.480643	(BA)=	251•42 <i>`</i> 14"
- <i>α</i> =	-40°27'19"	log AB	3.336778	$+\beta =$	+68°56'21"
(A P)=	<i>31•14</i> '55"	log siny	9.974629	(BP)=	<i>320•38'35"</i>
		log(AB:sin y)	3.362149		
log(AB	:sinγ)	3.362149	log(AB:sin	ιγ)	3.362149
log	g sinβ	9,969975	log sir	ηα	9.812147
lo	og AP	3.332124	log E	3P	3.174296

Koordinaten des Punktes P

Von A:

log AP	3.332124	log AP	3.332124
log sin (AP)	9.714960	log cos (AP)	9.931928
log AP sin (AP)	3.047084	log AP cos (AP)	3.264052
y_p - y_a	+1114,51m	x_p - x_a	+1836,76m
Уа	+3418,45m	X_a	-64524,94m
y_p	+4532,96m	x_p	-62688,18m
Von B:			
log BP	3.174296	log BP	3.174296
log sin (BP)	9.802192n	log cos (BP)	9.888298
log BP sin (BP)	2.976488n	log BP cos (BP)	3.062594
$y_p - y_b$	-947,30m	x_p - x_b	+1155,03m
y _b	+5480,26m	x_b	-63843,22m
y_p	+4532,96m	x_p	-62688,19m

Mit hinreichender Genauigkeit hat man dann als endgültigen Wert für die Koordinaten des Punktes P den Mittelwert aus beiden Bestimmungen.

Auch für diese häufig auftretende Aufgabe hat Prof. W. Jordan ein Rechenformular entwickelt, welches in Abbildung 14.1 dargestellt ist.

Abb. 14.1: Rechenformular zur Koordinatenbestimmung durch Vorwärts-Einschneiden

Die Originalversion ist in der Abbildung 14.2 zu finden. Diese Berechnung wurde ebenfalls im Rahmen einer Vermessungsübung im Bad Salzdetfurth im Jahre 1899 angestellt.

Vorwärts - Einschneiden.

(Handbuch der Vermessungskunde II.Bd. S.205 u.239.)

B Raderfeld	116-22824,48	x, + \$1632,80	Waldeck -
A Strengen	ya - 22063, 64	xa + 71328,60.	A
36	- ya 760,8-4 x	6-tha + - 304 - 20	b a
40- ya 2, 881293 m	45- ya 288/293	xy xa 2, 483159	1
with - wa - 2, 483159	sin(AB) 9. 96-14-9-8 w	cas/AB/9-56 26 6 2 2	A B
lung (AB) 0,34 8 1-3-4 1	2,913495	c \$ 9+ 34 9 2 2 2	
(AB)_291°97'33	(AP) 233 29 32	(BP) 147 4 - 2	3 7 m
-(AP)_ 233 24 32	-(BP)_14		2
a =	8	13	£
c 2,913498-	-2, <u>113</u> +-2	$4 - \alpha = -38 - 18$	A
sin y 9,999126_	Asin y 9, 7.7.9.12	6. 15 - 53 - 4 - 1 1 8% 91 5	
c: sin y 291434.6.	r:sun 7-9-9-4-3-7	$Q = \frac{\gamma = 2 \lambda \gamma}{180^{\circ} 0'0''}$	/
Simp 9- 462+ 4	a 9.4.4 8-3-		
2,676547	1 9/04/45 42	2844204	a. 12844204
D. 2,646274	0. 407 00	sin BP 9734636	cas (BP) 9924209 m
1 9 50 11 U 9	1. 21/5-1 A-1-2-	A 4/4 9-5-788-4A-	1.20 276841-3-
1 11 - 2.2.063.64	it = + 71328,60-	B. y1= - 22824 48.	x3= - + 71632, 80.
1' 01 - 381,66	A.K 282,50	1.3/0= - + 3 79, 18-	1 x = 386,70
1' " -22445.30	x + 7/076,10	Py==22443,30	- ar = = = = = = = = = = = = = = = = = =
., , , ,	N = - 22445-30	X=+ 71046,10	- ho
11.1.1	1 59	+ + 1 47	- 011.
Mathe	U y = - 22445,4	2 x=+11046,20	f

Abb. 14.2: Originalformular zum Vorwärts-Einschneiden

Nach dem diese Grundaufgabe der Triangulierung behandelt wurde, ergibt sich in einer Abwandlung nach Abbildung 15 eine auch oft vorkommende Situation.

Dabei sollen die Koordinaten von A und B zur Bestimmung der Koordinaten des Punktes P herangezogen werden. Eine direkte Sichtverbindung von A nach B gibt es nicht, so dass die Winkel α und β ebenfalls nicht direkt gemessen werden konnten. Lediglich auf den Punkten A und B sind Richtungsmessungen zu den Punkten C, Dund E möglich, deren Koordinaten ebenfalls vorhanden sein mögen. Daraus lassen sich die entsprechenden Azimute (AC), (AD) und (BE) ableiten. Zusammen mit dem Azimut (AB) und den durch Richtungsmessung abgeleiteten Azimuten (AP) und (BP) lassen sich die dann die Winkel α , β und γ im Dreieck ABP berechnen.

 $\alpha = (AB) - (AP)$ $\beta = (BP) - (BA)$ $\gamma = (AP) - (BP)$ Probe: $\alpha + \beta + \gamma = 180^{\circ}00'00''$ Der weitere Rechenweg entspricht dann dem in Aufgabe 3 behandeltem Fall und wird an dieser Stelle nicht näher wiedergegeben.

Abb. 15: Vorwärts-Einschneiden durch zwei Strahlen (Abwandlung von Aufgabe 3)

Die nun zu behandelnde Aufgabe 4 hat den ebenen Rückwärtsschnitt oder die Pothenotsche Aufgabe zum Inhalt. Sie wird nach dem französischem Geometer und Mathematiker Laurent Pothenot (1650 – 1732) benannt, der Mitglied der Académie royale des sciences war und als Professor am Collège de royale lehrte. Er arbeitete mit Jean-Dominique Cassini (1625 – 1712) und Philippe de La Hire (1640 -1718) zusammen.

Aufgabe 4

In der Abbildung 16 sind drei Punkte *A*, *M* und *B* durch die beiden Entfernungen AM = a und BM = b sowie dem Winkel $BMA = \gamma$ festgelegt. Ein Punkt *P* wird gegen *A*, *M*, *B* durch die Messung der beiden Winkel $APM = \alpha$ und $MPB = \beta$ bestimmt.

Gesucht sind zum einen die Entfernungen $AP=s_a$, MP=s und $BP=s_b$ und zum anderen die Winkel φ und ψ .

Abb. 16: Pothenotsche Aufgabe oder ebener Rückwärtsschnitt

Wie aus der Abbildung 16 leicht ersichtlich, besteht die geometrische Lösung aus dem Schnitt zweier Kreise über *AM* und *MB* mit den Peripheriewinkeln α und β . Ein Versagen der Lösung ist dann gegeben, wenn alle vier Punkte *A*, *M*, *B* und *P* auf einem Kreis, dem sog. gefährlichen Kreis, liegen. An dieser Stelle soll aber auf weitere eingehende Betrachtungen dazu verzichtet werden. Lediglich die allgemeine Lösung dieses gängigen Verfahrens mit der logarithmischen Berechnung ist von alleinigem Interesse.

Betrachtet man die beiden Dreiecke *AMP* und *BMP*, so sind in keinem von beiden zwei bekannte Winkel vorhanden, so dass eine direkte Anwendung des Sinus-Satzes nicht möglich ist. Nun lassen sich die beiden Winkel φ und ψ als Unbekannte definieren und in folgenden Gleichungen ausdrücken.

$$\alpha + \beta + \gamma + \varphi + \psi = 360^{\circ} \text{ (Viereckssumme)}$$

$$\Rightarrow \frac{\varphi + \psi}{2} = \frac{360^{\circ} - (\alpha + \beta + \gamma)}{2}$$
(9)

Eine zweifache Anwendung des Sinussatzes ergibt

$$s = \frac{a}{\sin\alpha} \sin\varphi = \frac{b}{\sin\beta} \sin\psi$$
$$\Rightarrow \frac{\sin\varphi}{\sin\psi} = \frac{\frac{b}{\sin\beta}}{\frac{a}{\sin\alpha}}.$$
(10)

Aus diesen beiden Gleichungen sollen die Winkel φ und ψ bestimmt werden, dazu ersetzt man den Quotienten durch den *cot* eines Hilfswinkels μ

$$\frac{\frac{b}{\sin\beta}}{\frac{a}{\sin\alpha}} = \frac{1}{\tan\mu} = \frac{\sin\varphi}{\sin\psi}.$$
(11)

Die Nutzung der Additionstheoreme ergibt weiter

$$\frac{\sin\varphi - \sin\psi}{\sin\varphi + \sin\psi} = \frac{1 - \tan\mu}{1 + \tan\mu}$$

$$\sin\varphi - \sin\psi = 2 \cdot \sin\frac{\varphi - \psi}{2}\cos\frac{\varphi + \psi}{2}$$

$$\sin\varphi + \sin\psi = 2 \cdot \cos\frac{\varphi - \psi}{2}\sin\frac{\varphi + \psi}{2}$$

$$\frac{1 - \tan\mu}{1 + \tan\mu} = \cot(\mu + 45^{\circ})$$

$$\Rightarrow \tan\frac{\varphi - \psi}{2} = \tan\frac{\varphi + \psi}{2}\cot(\mu + 45^{\circ})$$
(12)

schlussendlich

$$\frac{\varphi + \psi}{2} + \frac{\varphi - \psi}{2} = \varphi$$

$$\frac{\varphi + \psi}{2} - \frac{\varphi - \psi}{2} = \psi.$$
(13)

Die Berechnung von s erfolgt zur Probe und die beiden Entfernungen s_a und s_b werden dann mit dem Sinus-Satz berechnet.

$$s_{a} = \frac{a}{\sin\alpha} \sin(\varphi + \alpha) \quad und \quad s_{b} = \frac{b}{\sin\beta} \sin(\psi + \beta)$$
(14)

Damit ist die eigentliche pothenotische Rechnung abgeschlossen. Daran schließt sich das logarithmische Rechenschema mit einem Zahlenbeispiel aus dem Triangulationsnetz Hannover:

Gegeben sind die Messgrößen:

$$\begin{array}{rl} \gamma = 174^{\circ}13'37'' \\ \alpha = 24^{\circ}58'47'' \\ \beta = 41^{\circ}02'58'' \\ p + \alpha + \beta = 240^{\circ}15'22'' \\ \varphi + \psi = 119^{\circ}44'38'' \implies \gamma + \alpha + \beta + \varphi + \psi = 360^{\circ} \\ \frac{\varphi + \psi}{2} = 59^{\circ}52'19'' \end{array}$$

Logarithmische Berechnung

log a	2.925086	log b	3.191357
log sin lpha	9.625618	log sin β	9.817374
$log(a:sin\alpha)$	3.299468	$log(b:sin\beta)$	3.373983
$log(b:sin\beta)$	3.373983		
log tan μ	9.925485		
$log cot(\mu+45^{\circ})$	8.932366		
$log tan((\varphi + \psi)/2)$	0.236322		
$log tan((\varphi - \psi)/2)$	9.168688		

Ergebnis

$\mu =$	40°06'31"
μ +45°=	85°06'31"
$(\varphi + \psi)/2 =$	59°44'38"
$(\varphi - \psi)/2 =$	08°23'19"
φ=	68°15'38"
$\psi =$	51°29'00"

Der Übergang zur praktischen Lösung geschieht mit Hilfe von Koordinaten, denn normalerweise werden die Entfernungen AM=a und BM=b sowie der Winkel $BMA=\gamma$ selten gemessen, hier liegen dann die Koordinaten der Punkte $A(y_a, x_a)$, $M(y_m, x_m)$ und $B(y_b, x_b)$ vor. Lediglich auf dem Punkt P werden die Winkel $APM=\alpha$ und $MPB=\beta$ gemessen. Gesucht sind dann die Koordinaten des Punktes P(y,x).

Auch hier kommen wieder die allgemeinen Koordinaten- und Azimutformeln aus den vorangegangenen Aufgaben zur Anwendung. Das folgende Rechenschema aus dem Triangulationsnetz von Hannover gibt die Lösung wieder.

1)				
,	Gemessene Richtu	ngen	Winkel	
Р	A Ägidius	136°53'05"	α=	24•58'47''
Technische Hochschule	M Waterloo	161°51'52"	<i>β</i> =	<i>41•02`58</i> ''
	B Wasserturm	202°54'50"	$\alpha + \beta =$	66•01 <i>`</i> 45"

2)

	y	X		У	X				
M Waterloo	-14657,52m	+93254,39m	M Waterloo	-14657,52m	+93254,39m				
A Ägidius	-13879,79m	+93575,89m	B Wasserturm	-16145,76m	+92808,28m				
Differenzen (M-A)	-777,73m	-321,50	Differenzen (M-B)	+1488,24m	+446,11m				
$y_m - y_a$ $x_m - x_a$ $y_m - y_b$ $y_m - x_b$									
<i>Probe:</i> $(y_m-y_a)-(y_m-y_b)=y_b-y_a$ und $(x_m-x_a)-(x_m-x_b)=x_b-x_a$									

3)

(AM) =	247°32'26"
(<i>BM</i>)=	73°18'49"
γ=	174°13'37"
$\alpha + \beta =$	66°01'45"
$\gamma + \alpha + \beta =$	240°15'22"
$\phi + \psi =$	119°44'88"
$\gamma + \alpha + \beta + \varphi + \psi =$	360°00'00"

4)

,	Winkel-Pro	be $(\varphi + \alpha) + (\psi + \beta) + \gamma =$	360°00'00"
$\varphi + \alpha =$	<i>93•14</i> '25"	<i>ψ</i> + <i>β</i> =	<i>92•31'58"</i>
$\dot{\alpha}=$	24°58'47"	$\beta =$	<i>41°02'58"</i>
φ=	68•15'38"	ψ=	<i>51</i> •29'00"
$(\varphi - \psi)/2 =$	08°23'19"		
$(\varphi + \psi)/2 =$	59°52'19"		
μ +45°=	85°06'31"		
μ=	40°06'31"		
5)			
$\log tan((\varphi - \psi)/2)$	9.108088		
$\frac{\log \tan((\varphi + \psi)/2)}{\log \tan((\varphi + \psi)/2)}$	0.236322		
$log \ cot \ (\mu + 45^{\circ})$	8.932366		
$log tan \mu$	9.925485		
$log (b:sin \beta)$	3.373983		
$log (a:sin \alpha)$	3.299468	$log (b: sin \beta)$	3.373983
log sin α	0.625618	log sin β	9.817374
log a	2.925086	log b	3.191357
log tan (AM)	0.383648	log tan (BM)	0.523231
$log(x_m-x_a)$	2.507181n	$log(x_m-x_b)$	2.649442
oder $\log \cos (AM)$		oder log cos (BM)	
Erg. $\log \sin (AM)$	0.034257	Erg. log sin (BM)	0.018684
$log(v_m-v_a)$	2.890829n	$log(v_m-v_h)$	3.172673

6)			
$log(a:sin\alpha)$	3.299468	$log(a:sin\alpha)$	3.299468
$\log \sin (\varphi + \alpha)$	9.999305	$\log \sin \varphi$	9.967958
$log s_a$	3.298773	log s	3.267426
$log(b:sin\beta)$	3.373983	$log(b:sin\beta)$	3.373983
$\log \sin(\psi + \beta)$	9.999575	log sin ψ	9.893444
$log s_b$	3.373558	log s	3.267427
7) (Proben)			
$(AM) = 247^{\circ}32^{\circ}26^{\circ}$	$(AP) = 315^{\circ}48'04''$	$(BP) = 21^{\circ}49'49''$	$(BM) = 73^{\circ}18'49''$
$+\varphi = +68^{\circ}15'38''$	$+\alpha = +24^{\circ}58'47''$	-β= -41°02'58"	-ψ= -51°29'00"
$(AP) = 315^{\circ}48'04''$	$(MP) = 340^{\circ}46'51''$	$(MP) = 340^{\circ}46'51''$	(BP) 21°49'49"
8)			
$log s_a$	3.298773	$log s_a$	3.298773
log sin (AP)	9.843327n	log cos (AP)	9.855473
$\log \Delta y_a$	3.142100n	$\log \Delta x_a$	3.154246
$log s_b$	3.373558	$log s_b$	3.373558
log sin (BP)	9.570378	log cos (BP)	9.967684
$log \Delta y_b$	2.943936	$log \Delta x_b$	3.341242
9)			
, $A v_a =$	-13879,79m	$x_a \equiv$	+93575,89m
$\Delta y_a =$	-1387,08m	$\Delta x_a =$	+1426,42m
P $y=$	-15266,87m	x =	+95002,31m
$B y_b =$	-16145,76m	$X_b =$	+92808,28m
$\Delta y_b =$	+878,90m	$\Delta x_b =$	+2194.03m
P $y=$	-15266,86m	<i>x</i> =	+95002,31m
Technische Hochschule (Eisenplatte E)	-15266,86m		95002,31m

Damit ist die pothenotische Aufgabe als eines der grundlegenden Berechnungsmöglichkeiten bei der Triangulierung gelöst.

Auch dazu hat Prof. W. Jordan ein Rechenformular entwickelt, welches in der Abbildung 17.1 dargestellt ist.

Abb. 17.1: Rechenformular zur pothenotischen Punktbestimmung (Rückwärts-Einschneiden)

Auch dazu gibt es ein Original-Berechnungsformular im Rahmen einer Schlussvermessungsübung im Raum Bad Salzdetfurth aus dem Jahre 1899.

Abb. 17.2: Originalformular zur Pothenotischen Punktbestimmung (Rückwärts-Einschneiden)

Die weitere Verdichtung im trigonometrischen Netz der Landesvermessung zur Schaffung von Vermessungspunkten für den Zweck der Detail- und Katastervermessung wurde u. a. vielfach mit Polygonzügen erzielt. Dabei wurden die trigonometrischen Punkte durch Richtungs-, Winkel- und Streckenmessungen miteinander verbunden, wie es in der Abbildung 18.1 ersichtlich ist.

Abb. 18.1: Polygonzug

Der dargestellte Polygonzug verbindet die Punkte (θ) und (n) durch Winkel- und Streckenmessungen mit Richtungsmessungen zu den Fernzielen P und Q. Ziel der Vermessungsaufgabe ist es, die Koordinaten der Punkte (1) bis (4) zu bestimmen. Bekannt sind die Koordinaten der Punkte (θ), (n), P und Q. Dabei kommen die bisher in der Triangulierung bekannten Rechenformeln zur Anwendung. Auf eine ausführliche Darstellung aller Formeln wird an dieser Stelle bewusst verzichtet. Zur Veranschaulichung dient ein aus [4] entnommenes Beispiel (Abbildung18.2).

Abb. 18.2: Beispiel eines Polygonzuges

Dieses Beispiel entstammt einer Vermessung in der Gemarkung Grünwinkel bei Karlsruhe. Der Polygonzug umfasst 7 Punkte, die es koordinatorisch zu bestimmen gilt. Gegeben sind die Koordinaten der Punkte Hard, Neubruch, Capelle und Brauerei.

Das Rechenschema mit logarithmischer Berechnung zeigt die Abbildung 19, welches ebenfalls in [4] dargestellt ist.

.sagnZ Punkt		Brechungs- winkel β	Azimut α	μ Azimut α	Strecke s Meter	log s log sin α log s sin α	log s log cos α log s cos α	Ordinaten- unterschied s sin α +	Abscissen- unterschied s cos α + – –	Verbesserter Ordinaten- unterschied Δy und Ordinate y Meter	Verbesserter Abscissen- unterschied Δx und Abscisse x Meter	Punkt
., 2.	3,	4.	5,	6.	7.	8.	9.	10.	11.	12.	13.	
tnommen.	Hard	+ 17 16° 8′ 14″ + 17	185° 44' 39'' 21° 53' 10''	159,60	2.203 033 9.571 433 1.774 466	2.203 033 9.967 514 2.170 547	+3 + 59,49	+ 5 + 148,10	-7853,19 + 59,52	+ 45313,21 + 148,15	Hard	
S. 000 en	(1)	261° 52' 20"	103° 45' 47"	135,72	2.132 644 9.987 348 2.119 992	2.132 644 9.376 407, 1 509 051	$^{+4}_{+131.82}$	+ 32.99	- 7793,67	+ 45461,36	(1)	
und (3) 5	(2)	+ 17 196° 47' 10"	120° 33' 14''	66,45	1.822 495 9.935 079	1.822 495 9.706 161,	+ 3	+1	- 7661,81	+ 45429,12	(2)	
von (2)	(3)	+ ¹⁷ 189°14′0″	129° 47' 31″	117,33	2.069 409 9.885 572	2.069 409 9.806 181,	+ 37,22		- 7604 ,56	33,73 + 45395,39	(3)	
47" sind	(4)	98° 5′ 0″	47° 52′ 48″	253,83	1.954 981 2.404 543 9.870 253	1.875 590, 2.404 543 9.826 519	+ 90,15	+ 5	+ 90,18 7514,38	75,04 +- 45320,35	(4)	
278° 55'	(5)	+ 17 251° 1′ 40″	118° 54′ 45″	131,13	2.274 796 2.117 702 9.942 186	2.231 062 2.117 702 9.684 373,	+ 188,28	+ 170,24	+ 188,32 - 7326,06	+ 170,29 + 45490,64	(5)	
397 und	(6)	+ 17 74° 36' 35″	13° 31′ 37″	365,22	2.059 888 2.562 555 9.369 035	1.802 075, 2.562 555 9.987 783	+ 114,79	- 63,40	+ 114,82 - 7211,24	- 63,35 + 45427,29	(6)	
185° 44'	(7)	+ 17 178° 50' 55″	12°22'49"	224,85	1.931 590 2.351 893 9.331 223	2.550 338 2.351 893 9.989 782	+ 85,43	+ 355,09	+ 85,46 - 7125,78	+ 355,14 + 45782,43	(7)	
mute	Nonhrugh	+ 18		1454,13=[s]	1.683 116	2.341 675	+ 48,21	+ 219,62	+ 48,24	+ 219,67	Nuchana	
Die Azi	Summe Soll	1353° 8' 34" 3 11 8	278° 55′ 47″				$\frac{+775,39}{+775,39}$ Soll + 775,65	$\frac{+893,05 -204,56}{+688,49}$ Soll + 688,89	+ 775,65	+ 688,89	reubruc	
Zug Nr. 1.	Fehler	$\frac{-2'34''}{\frac{154}{9}} = 17''$	9 3° 11′8″				Fehler $w^{*} = -0.2$ $\frac{0.26}{8} = 0.03$	$\begin{array}{c c} & & & \\ \hline & & \\ 6 \\ \hline & & \\ 8 \\ \hline & \\ 0,40 \\ \hline & \\ 8 \\ \hline & \\ 8 \\ \hline & \\ 0,05 \\ \hline \\ \end{array}$				

Abb. 19: Logarithmische Berechnung eines Polygonzuges

Damit ist das Kapitel zur Anwendung der Logarithmen für Azimut- und Koordinatenrechnungen im geodätischen Punktfeld eines rechtwinkligen Koordinatensystems im wesentlichen in seinen häufigsten Aufgaben behandelt. Auf die Wiedergabe von Abwandlungen für bestimmte Berechnungsaufgaben wird an dieser Stelle verzichtet.

3. Logarithmische Berechnungen bei der Feldmessung

Im vorangegangenen Kapitel wurden aus Richtungs- und Streckenmessungen Koordinaten in einem Koordinatensystem als zweidimensionale Betrachtung abgeleitet. Zur Bestimmung der Höhendimension gibt es ausgewählte Messverfahren, die es erlauben aus Messgrößen diese Information herzuleiten. Dazu gehört u. a. das Verfahren der trigonometrischen Höhenmessung, welches hier in seiner einfachen, d. h. einseitigen Bestimmung bei mittlerer Refraktionsannahme mit dem Refraktionskoeffizienten k=0,13 vorgestellt wird. Dieser beschreibt den Einfluss der Lichtstrahlbrechung auf das Messresultat. Die Abbildung 20 zeigt das Messprinzip.

Abb. 20: Einseitige trigonometrische Höhenübertragung

Aufgabe 5

Unter Berücksichtigung der Instrumentenhöhe i und der anvisierten Zielpunkthöhe z ergibt sich nach Abbildung 20 die Grundformel für die einseitige Höhenübertragung

$$h = a \cdot \tan \alpha + \frac{1-k}{2r}a^2 + i - z \tag{15}$$

Mit folgenden Bedeutungen:

 $h = gesuchter H \ddot{o}henunterschied [m9]$ a = Distanz Standpunkt-Zielpunktr = Erdradiusk = Refraktionskoeffizient (= 0,13) $\alpha = gemessener H \ddot{o}henwinkel$

Der Term

$$\frac{1-k}{2r}a^2$$
(16)

berücksichtigt den Einfluss von Erdkrümmung und Strahlbrechung.

Als Beispiel für die Ableitung eines Höhenunterschiedes mit diesem Verfahren wird die in [4] enthaltene Berechnung wiedergegeben.

		у	x	
Standpunkt	Karlsruhe, Polytechnikum, Pfeiler	+3508,36m	+53046,50m	i=0,27m
Zielpunkt	Durlacher Warte, Signalkugel	-1892,36m	+54452,14m	z=2,11m
	Differenzen	+5400,72m	-1405,64m	

|--|

log 5400,72	3.732452				
log sin α	0.014238	log a =	3.746690	a =	5580,71m
log 1405,64	3.147874				
log tan α	0.584578				

Mit dem gemessenen Höhenwinkel

$$\alpha = +1^{\circ}26'18''$$

ergibt sich das logarithmische Rechenschema

log a	3.746690		
log tan α	8.399828		
log a tan α	2.146518	a tan α =	+140,13m

Der Einfluss von Erdkrümmung und Strahlbrechung kann aus den von Prof. W. Jordan entwickelten Hilfstafeln [4] entnommen werden. Die Abbildung 21.1 zeigt auszugsweise die Hilfstafel für den Korrekturterm bei gegebener Strecke a und die Abbildung 21.2 auszugsweise die Hilfstafel bei gegebenem log a.

0]	Anhang.										
		Tı	rigono	metri	sche 1	löhen	messu	ng.			
	Ho	rizontko	rrektion	1-k	a^2 , lc	a r = 6	6.80489	k =	0,13		
				2r				1			
			als	Funktio	n der r	Intiernu	ng <i>a</i> .				
a	0	100	200	300	400	500	600	700	800	900	Diff.
m	m	m	m	972 J	1772	932	934	977	6 m	932	+
10	0,000	0,001	0,003	0,006	0,011	0,017	0,025	0,033	0,044	0,055	13
$1\ 000$	0,068	0,082	0,098	0,115	0,134	0,153	0,175	0,197	0,221	0,246	27
2000	0,273	0,30	0,33	0,36	0,39	0,43	0,46	0,50	0,53	0,57	4
$3\ 000$	0,61	0,66	0,70	0.74	0,79	0,84	0,88	0,93	0,98	1,04	5
$4\ 000$	1,09	1,15	1,20	1,26	1,32	1,38	1,44	1,51	1,57	1,64	6
$5\ 000$	1,70	1,77	1,84	1,91	1,99	2,06	2,14	2,21	2,29	2,37	8
m	m	m	m	m	m	m	m	<i>m</i>	m .	m	
6 000	2,45	2,54	2,62	2,71	2,79	2,88	2,97	3,06	3,15	3,25	10
7 000	3,34	3,44	3,53	3,63	3,73	3,83	3,94	4,04	4,15	4,25	11
8 000	4,36	4,47	4,58	4,70	4,81	4,93	5,04	5,16	5,28	5,40	12
9 000	5,52	5,65	5,77	5,90	6,02	6,15	6,28	6,41	6,55	6,68	13
10 000	6,82	6,95	7,09	7,23	7,37	7,52	7,66	7,80	7,95	8,10	15

Abb. 21.1: Hilfstafel für Korrekturterm bei gegebener Distanz

Anhang	•
--------	---

Trigonometrische Höhenmessung.

Horizontkorrektion $\frac{1-k}{2r}a^2$, $\log r = 6.80489$, k = 0.13

als Funktion von log a.

log a	0	1	2	3	4	5	6	7	8	9	Diff.
2.0	0,00	0,00	0,00	0,00	0 ,00	0,01	0,01	0,02	^m 0,03	^m 0,04	
2.9	0.04^{m}	0.05^{m}	0.05^{m}	0.05^{m}	0.05^{m}	0.05^{m}	0.06	0.06	0.06	0.07	0
3.0	0,07	0.07	0.07	0,08	0,08	0,09	0,09	0,09	0,10	0,10	1
3.1	0.11	0.11	0.12	0,12	0,13	0.14	0.14	0,15	0,16	0,16	1
3.2	0.17	0.18	0,19	0,20	0,21	0,22	0,23	0,24	0,25	0,26	1
3.3	0,27	0,28	0,30	0,31	0,33	0,34	0,36	0,37	0,39	0,41	2
	m	m	223	m	m	m	m	m	778	m	
3.4	0,43	0,45	0,47	0,49	0,52	0,54	0,57	0,59	0,62	0,65	3
3.5	0,68	0,71	0,75	0,78	0,82	0,86	0,90	0,94	0,98	1,03	5
3.6	1,08	1,13	1,18	1,24	1,30	1,36	1,42	1,49	1,56	1,64	7
3.7	1.71	1,79	1,88	1,97	2,06	2,16	2,26	2,36	2,47	2,59	12
3.8	2.71	2,84	2,98	3,12	3,26	3,42	3.58	3,75	3,92	4,11	19

Abb. 21.2: Hilfstafel für Korrekturterm bei gegebenem Logarithmus der Distanz

Aus Tafel 1 (Abbildung 21.1) erhält man den Wert 2,12m, während aus der Tafel 2 (Abbildung 21.2) der Wert 2,13m zu entnehmen ist. Damit lässt sich der endgültige Höhenunterschied berechnen.

h = 140, 13m + 2, 12m + 0, 27m - 2, 11m = 140, 41m

Auch dazu wurde von Prof. W. Jordan ein Rechenformular mit logarithmischem Rechenschema entwickelt, welches in der Abbildung 22.1 dargestellt ist.

Abb. 22.1: Rechenformular zur trigonometrischen Höhenmessung

[11]

Das Originalformular ist in der Abbildung 22.2 zu finden.

Trigono	metri	ocke Höhenm	essung	t.
h = alang x + . Sie Correction 1.K a fis for how in in Gordan Hand bich der Va	AK a +	i- t. ut Refraction . Kuuta I Ban	ift guy n bun 5 1. 545 4. 546	i de la company and the company of t
non I	i= 440.	a=	loga . 3 75.8.16	a lang a 19.4, 26
word Hrs Gudu	2=	a= - 1. 56. 30	loglonge \$. 5, 3 P.2.2.	+ 2-K a2 + 2, 26
y	c-z=		log a linge 2.2 8.8. 3.8 .	alonga+1-Ka 1919.9
				+ - 7
				h=
nor II	i 1.40.	a=	loga . 3.533.4.4	alangh 16.9. 70
nonf deinenan	2	a= = 7. 50. 40."	Loginga - 8, 6. 9 6.23	+ 1-K a2 + 9.7.8
·	6. X		logalands 2.2.2.9. 6.7	alanget + 28 a - 168 92
	1		1 1 1 1 1 1 1 1	+1-2+444
				h= 167,52
uru II.	i= 440	a =	laga . 366.2.03	alanga 158,57
und apalam	2=	x = -1. 58.38.".	log lang 8.5 3.8 1.0	+ 1. 4 a +
y	···		laga lange - 2,2.0.0.1.3.	alga+15 ar - 15392
	1			+1-2 + . 4.4.0
			1	h= 15562

Abb. 22.2: Originalformular zur trigonometrischen Höhenmessung

Die zugehörigen Messungen wurden im Rahmen einer studentischen Übung im Raum Bad Nenndorf im Jahre 1885 gewonnen.

Aufgabe 6

Es kommt recht häufig vor, dass das Aufstellen des Theodolits auf einem trigonometrischen Punkt nicht zentrisch möglich ist, sondern auf einem Exzentrum vorgenommen werden muss. Die auf diesem Exzentrum gemessenen Richtungen sind dann auf das Zentrum zu zentrieren. In den Abbildungen 23.1 und 23.2 sind die Möglichkeiten einer Standpunktzentrierung je nach Größe des Zentrierungswinkels ε aufgeführt.

Abb. 23.1: Standpunktzentrierung mit ε < 180°

Abb. 23.2: Standpunktzentrierung mit $\varepsilon > 180^{\circ}$

Nach Abb. 23.1 ist

$$\varepsilon' = \varepsilon + \delta$$

$$\sin \delta = \frac{e}{s} \sin \varepsilon$$
(17)

Nach Abb. 23.2 ist:

$$(360^{\circ} - \varepsilon') = (360^{\circ} - \varepsilon) + \delta'$$

$$\sin \delta' = \frac{e}{s} \sin(360^{\circ} - \varepsilon')$$
(18)

Unter der Annahme, dass e im Verhältnis zu s sehr klein ist, wird

$$\delta = \frac{e}{s} \rho \cdot \sin \varepsilon$$

$$\delta' = -\frac{e}{s} \rho \cdot \sin \varepsilon'$$
(19)

und damit in beiden Fällen als Resultat

$$\varepsilon' - \varepsilon = \frac{e}{s} \rho \cdot \sin \varepsilon \tag{20}$$

Als Beispiel sollen die Messungen von Prof. W. Jordan im Triangulierungsnetz von Hannover auf dem Wasserturm Linden dienen. In der Mitte des Turmes befindet sich eine Flaggenstange, welche von den umgebenden Punkten als Zielpunkt dient. Wird dann vom Wasserturm gemessen, muss der Theodolit exzentrisch zur Flaggenstange aufgestellt werden (Abbildung 24).

Das logarithmische Rechenschema ist dann

C	P_{I}	P_2	P_3	P_4
Centrum	Technische Hochschule	Christuskirche	Aegidius	Waterloo
	Signal			
223°40'00"	22°40'12,5"	35°36'21,2"	73°28'07,5"	75°30'13,7"
	223°40'00"	223°40'00"	223°40'00"	223°40'00"
ε	159°00'12"	171°56'21"	209°48'07"	211°50'14"
S	2355m	2499m	2392m	1554m
$log \rho = 5.31443$				
log e =9.99123	5.30566	5.30566	5.30566	5.30566
log sin ε	9.55426	9.14682	9.69636n	9.72223n
cpl. log s	6.62801	6.60223	6.62124	6.80855
$\log \delta$	<i>1.48793</i>	1.05471	1.62326n	1.83644n
δ	+30.8"	+11,3"	-42,0"	-68,6"
				= -1'08,6"
centrierte Richtungen	22•40'43,3"	35•36'32,5"	73•27'25,5"	75•29'05,1"

Mit diesen Beispielen soll das Vorkommen des logarithmischen Rechnens auf dem Gebiet der niederen Geodäsie exemplarisch abgeschlossen sein. Bevor nun einige Beispiele der höheren Geodäsie folgen, soll ein wenig der Bereich der barometrischen Höhenmessung beleuchtet werden.

4. Barometrische Höhenmessung

Aufgabe 7

Basis der barometrischen Höhenmessung ist die Ausnutzung der physikalischen Situation, dass mit zunehmender Höhe der Luftdruck abnimmt, somit an verschiedenen Positionen in der Atmosphäre unterschiedliche Luftdrücke gemessen werden können. Damit lassen sich überschlägig Höhenunterschiede zwischen Messpunkten bestimmen. Unter Vernachlässigung der Wiedergabe der theoretischen Ableitungen und Grundlagen wird hier als Schlussformel die barometrische Höhenformel nach [4] angegeben.

$$h = K \cdot \log \frac{P}{p} \left(1 + \varepsilon \cdot t \right) \left(1 + 0.377 \frac{e}{(p)} \right) \left(1 + \beta \cdot \cos 2\varphi \right) \left(1 + \frac{2H}{r} \right)$$

mit

$$K = \frac{0.76}{M} \frac{13,59593}{0,00129277} \frac{1}{1,00021} = 18400 = barometrische Konstante$$

0,76m = Normalhöhe einer Quecksilbersäule M = 0,4342945 = logarithmischer Modul 13,59593 = Dichte des Quecksilbers 0,00129277 = Dichte der Luft unter Normaldruck 1,00021 = Reduktionsfaktor für Kohlensäure

h = zu messende Höhe P = an der unteren Station gemessener Luftdruck p = an der oberen Station gemessener Luftdruck $\varepsilon = 0,003665 = \text{Ausdehnungskoeffizient der Luft für 1°[C]}$ t = mittlere Luftemperatur in [C°] $(p) = \text{ der mittlere Luftdruck} = \frac{P + p}{2}$ 0,377 = 1 - d = Dichte des Wasserdampfes d = 0,623 $\beta = 0,00265 = \text{Schwerekoeffizient nach Helmert}$ $\varphi = \text{mittlere geographische Breite beider Stationen}$ H = mittlere Höhe beider Stationen r = 6370000m = Erdhalbmesser(21)

Zur Veranschaulichung wird ein Zahlenbeispiel, welches auch in [4] zu finden ist, wiedergegeben. Es werden die meteorologischen Stationen Karlsruhe und Höchenschwand betrachtet. Grundlage sind die 5-jährigen Mittelwerte von 1871 bis 1875.

	Quecksilber-		
	Barometerstand	Luftwärme	Feuchtigkeit
Untere Station Karlsruhe	751,79mm	+9,5°C	+7,5mm
Obere Station Höchenschwand	676,13mm	+5,9°C	+6,3mm
Mittelwerte	B=713,96mm	<i>t</i> =+7,7° <i>C</i>	e=6,9mm

Zur Anbringung der Schwerekorrektionen und –reduktionen sind Näherungswerte für die Meereshöhe und die geographische Breite von Interesse.

Karlsruhe	$H_{l}=$	120m	$\varphi_{l} =$	49°01 ʻ
Höchenschwand	$H_2 =$	1000m	$\varphi_2 =$	47°44'
Mittel	H =	560m	φ=	48•22ʻ

Für die entsprechenden Korrekturen hat Prof. W. Jordan in [4] eine entsprechende Hilfstafel bereitgestellt. Für dieses Beispiel gibt Abbildung 25.1 daraus einen Auszug wieder.

	D_0^{10}	-B =	$-\beta B$	соз 2 ф	$-2\frac{r}{r}$	_, mit	$\beta = 0,0$ r = 6 §)0265 n 370 000*	ach <i>He</i>	lmert.	
ite			Barome	eterstan	d B^{mm}	(und He	bhe H^m	über d	em Mee	er)	
& Bre	$rac{760^{mm}}{(0^m)}$	750^{mm} (115 ^m)	740 ^{mm} (230 ^m)	730^{mm} (345 ^m)	720^{mm} (460 ^m)	710^{mm} (575 ^m)	700^{mm} (690 ^m)	$\left egin{smallmatrix} 690^{mm} \ (805^m) \end{array} ight $	680 ^{mm} (920 ^m)	670^{mm} (1035 ^m)	660 ^{mm} (1150 ^m
	mm		mm	ատ		mm		m	mm	mm	mm
150		0.00	0.05	0.00		. 10	0.15			0.00	
45	-0,00	-0,03	-0,05	- 0,08	0,10	-0,13	-0,15	-0,17	-0,20	-0,22	-0,24
47	± 0.14	+0.04 +0.11	+0.02 ±0.08	0,01	-0.04	0,00	-0.09	- 0,11	- 0,15	- 0,10	-0.10
48	± 0.21	± 0.18	± 0.15	± 0.12	± 0.00	+ 0.07	± 0.02	± 0.09	0,01	-0.03	-0.06
8	+0,21	+0,18	+0,15	+0,12	+0,10	+0,07	+0,04	+0,02	0,01	- 0,03	- 0,

Abb. 25.1: Hilfstafel zur Schwerereduktion

Somit wird

Karlsruhe	751,79 + 0,28 - 0,03 = 752,04 mm
Höchenschwand	$676,13 + 0,17 - 0,21 = 676,09 \ mm$

und es können die Werte zur Einführung in die barometrische Höhenformel bereitgestellt werden.

$$P = 752,04mm$$

 $p = 676,09mm$ Mittelwert = 714mm
 $e = 6,9mm$
 $t = 7,7^{\circ}C$
 $\varphi = 48^{\circ}22'$
 $H = 560m$

Das logarithmische Rechenschema ist dann mit Nutzung der logarithmischen Tafeln in den Abbildungen 25.2, 25.3 und 25.4.

log 752,04 =	2.876241
log 676,09 =	2.830005
Differenz	0.046236

Г

log 0.046236	8.66498
log K (K=18400)	4.26482
mit $t=7,7^{\circ}C$ (siehe Abb. 25.2)	0.01209
<i>mit e=6,9 und B=714 (siehe Abb. 25.3)</i>	0.00158
mit φ =48,37° (siehe Abb. 25.4)	9.99987
mit $H=560$ (siehe Abb.25.4)	0.00008
log h	2.94342
<i>h</i> =	877,85m

Ist z. B. für die untere Station eine Höhe gegeben, so kann dann für die obere Station die Höhe berechnet werden.

Karlsruhe (z. B. NN-Höhe)	123,00m
<i>h</i>	877,85m
Höchenschwand (NN-Höhe)	1000,85m

-

]	Logarith	mische 1	<i>log</i> Korrektie	(1 + 0,0 on zur b	usobs t). arometri:	schen H	öhenmes	sung.		
t	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9	Dif fü 0,1
5°	0.00789	0.00805	0.00820	0.00835	0.00851	0.00867	0.00882	0.00898	0.00913	0.00929	16
6	00945	00960	00976	00991	01007	01022	01038	01053	01069	01085	15
7	01100	01116	01131	01147	01162	01178	01193	01209	01224	01240	15
8	01255	01270	01286	01301	01317	01332	01348	01363	01379	01394	18
9	01409	01425	01440	01456	01471	01486	01502	01517	01532	01548	1:

Abb. 25.2: Hilfstafel zur Temperaturkorrektion

	:	Logarith	mische]	<i>log</i> Korrektie	$\left(1+0, 0\right)$	$377 \frac{e}{B}$	schen H	öhenm e s	sung.		
Deme					Dunstd	ruck e					Diff
Barom. B	3 ^{mm}	4 mm	5 <i>mm</i>	6 ^{mm}	7 <i>mm</i>	8**	9 <i>mm</i>	10 ^{mm}	11 ^{mm}	12 ^{mm}	für ⊿e
mm							· · · · · · · · · · · ·				+
680	0.00072	0.00096	0.00120	0.00144	0.00168	0.00192	0.00216	0.00240	0.00264	0.00288	24
690	00071	00095	00118	00142	00166	00190	00213	00237	00260	00284	24
700	00070	00093	00116	00140	00163	00186	00210	00233	00257	00280	23
710	00069	00092	00115	00138	00161	00184	00207	00230	00253	00276	23
700	00000	00001	00119	00196	00150	00199	00204	00227	00949	00979	93

Abb. 25.3: Hilfstafel zur Feuchtigkeitskorrektion

ø	log	d	ø	log	d	ø	log	d
15° 16 17 18 19	$\begin{array}{c} 0.000 \ 996 \\ 0.000 \ 975 \\ 0.000 \ 953 \\ 0.000 \ 930 \\ 0.000 \ 906 \end{array}$	21 22 23 24 25	45° 46 47 48 49	0.000 000 9.999 960 9.999 920 9.999 880 9.999 840	$ \begin{array}{c} 40 \\ 40 \\ 40 \\ 40 \\ 40 \\ 40 \end{array} $	75° 76 77 78 79	9.999 002 9.998 983 9.998 964 9.998 947 9.998 931	19 19 17 16 14
		lo	$g\left(1+\frac{2}{r}\right)$	$\left(\frac{H}{r} \right)$ mit $r = 1$	6 370 0	00 ^m		
H	log	d		log	d	H	log	d
0 ^m 100 200 300 400	$\begin{array}{c} 0.000\ 000\\ 0.000\ 014\\ 0.000\ 027\\ 0.000\ 041\\ 0.000\ 055\\ 0\ 000\ 068 \end{array}$	$14 \\ 13 \\ 14 \\ 14 \\ 13$	$ 500^{m} 600 700 800 900 1000 $	$\begin{array}{c} 0.000\ 068\\ 0.000\ 082\\ 0.000\ 095\\ 0.000\ 109\\ 0.000\ 123\\ 0\ 000\ 136\end{array}$	14 13 14 14 13	$ \begin{array}{c c} 1000^m \\ 1100 \\ 1200 \\ 1300 \\ 1400 \\ 1500 \end{array} $	$\begin{array}{c} 0.000 \ 136 \\ 0.000 \ 150 \\ 0.000 \ 164 \\ 0.000 \ 177 \\ 0.000 \ 191 \\ 0.000 \ 205 \end{array}$	14 14 13 14 14

Abb. 25.4: Hilfstafel zur Schwere-Reduktion

Dieses Kapitel zeigt, wie hilfreich die Nutzung logarithmischer Berechnungen und Tafeln für die geodätische Praxis sein konnte.

5. Logarithmische Anwendungen und Berechnungen in der höheren Geodäsie

Die Aufgabe der höheren Geodäsie besteht in der Bestimmung von Erdgestalt und Schwerkraft. Wie bereits in der Einleitung ausgeführt, wird hier die Erde in erster Näherung als Kugel, dann als Rotationsellipsoid (Sphäroid) und anschließend als Geoid betrachtet. Desweiteren ist es notwendig entsprechende Ellipsoidparameter und Berechnungsalgorithmen für die Zwecke der Landesvermessung bereitzustellen.

Die historische Entwicklung zur Beschreibung und der Kenntnis von der mathematischen Erdoberfläche sei an dieser Stelle in Form der einer Tabelle 2 mit wenigen Stichworten zu den jeweiligen Arbeiten der Autoren kurz wiedergegeben.

Autor	Zeitpunkt	Arbeiten/Entdeckungen
Pythagoras	6. Jhd. v. Chr.	Erste Annahme über kugelförmige Himmelskörper
Aristoteles	340 v. Chr.	Schrift: Über den Himmel, Erdumfang bestimmt
Dikaiarchos	309 v. Chr.	Erdumfang neu bestimmt
Aristarch	270 v. Chr.	Heliozentrisches Weltbild
Eratosthenes	220 v. Chr.	Erste wissenschaftliche Messung des Erdumfangs
Copernicus	15./16. Jhd.	Aufstellung des Planetensystems
Galilei	16./17. Jhd.	Nachweis des heliozentrischen Weltbilds
Kepler	16./17. Jhd.	Schaffung der Planetengesetze
Huygens	17. Jhd.	Physikalische Pendel, Zentralbewegung, Schwerkraft
Newton	17./18. Jhd.	Gravitationsgesetz, homogenes Ellipsoid
Snellius	1619	Einführung der Triangulation für Erdvermessungen
Picard/Azout	1669	Breitengradmessung
Cassini	17./18. Jhd.	Längengradmessungen, Triangulation
Clairaut	1743	Berechnung der Abplattung durch Schwerkraft
Bradley	1748	Nutation
d'Alembert	1749	Untersuchung der Präzession
Laplace	18./19. Jhd.	Darstellung des Weltsystems, Nebularhypothese
Bessel	18./19. Jhd.	Ableitung von Ellipsoidparametern (1841)

Tab. 2: Historie zur Entwicklung einer mathematischen Erdoberfläche

Am Beispiel der von Friedrich Wilhelm Bessel (1784 - 1846) aus zahlreichen Messungen abgeleiteten Parameter für ein Erdellipsoid soll die Bedeutung der Logarithmen als Rechentechnik exemplarisch wiedergegeben werden. Die Aufführung aller auf einer Kugel oder einem Ellipsoid durchzuführenden Rechnungen würde an dieser Stelle den Rahmen deutlich sprengen. Es sei dabei auf die verwendete Literatur verwiesen.

In der Abbildung 26.1 ist das Rotationsellipsoid mit seinen beiden Halbachsen a und b dargestellt. Die große Halbachse a befindet sich in der Äquatorebene, die kleine Halbachse b in der Rotationsachse.

Abb. 26.1: Das Rotationsellipsoid

In der Tabelle 3 sind einige Parameter von Rotationsellipsoiden der Erde chronologisch mit einigen Zusatzinformationen aufgeführt. Neben der historischen Entwicklung zur Bestimmung der Erdparameter wird auch deutlich, dass für bestimmte Gebiete, diese Parameter für die Landesvermessung angepasst wurden. Das interessierende Bessel-Ellipsoid ist durch Fettschrift herausgehoben.

Ellipsoid	Jahr	Halbachse	Halbachse	Abplattung	Gebiet, Anmerkungen
Autor		a in Meter	b in Meter	(1/f)	
Normalsphäre		6370997,000	6370997,000		Kugel
Maupertuis	1738	6397300,000	6363806,283	191,0000	Frankreich
Delambre	1810	6376985,000	6356323,871	308,6465	Frankreich
Plessis	1817	6376523,000	6355862,933	308,6400	Frankreich
Schmidt	1828	6376804,370	6355690,522	302,0200	Schweiz
Everest	1830	6377309,613	6356108,570	300,8017	Pakistan
Everest	1830	6377309,613	6356109,571	300,8156	Pakistan
Airy	1830	6377563,396	6356256,909	299,3250	Grossbritannien
Everest	1830	6377299,365	6356098,359	300,8017	
Everest	1830	6377276,345	6356075,413	300,8017	Indien
Everest	1830	6377298,556	6356097,550	300,8017	Malaysia
Bessel	1841	6377397,155	6356078,963	299,1528	Eurasien und Mitteleuropa
Bessel Namibia	1841	6377483,865	6356165,383	299,1528	Namibia
Airy mod.	1865	6377340,189	6356034,448	299,325	Irland
Clarke	1866	6378206,400	6356583,800	294,9787	Nordamerika
Clarke	1878	6378190,000	6356456,000	292,4660	Nordamerika
Clarke	1880	6378249,145	6356514,870	293,4650	Frankreich, Afrika
Helmert	1906	6378200,000	6356818,170	298,3000	
Hough	1906	6378270,000	6356818,170	298,3000	
Havford	1910	6378388,000	6356911,946	297,0000	USA
Hayford	1924	6378388,000	6356912,000	297,0000	International, Europa
International	1924	6378388.000	6356911.946	297.0000	
NAD27	1927	6378206,400	6356583,800	294,9787	Nordamerika
Krassovskv	1940	6378245.000	6356863.019	298.3000	Russland
Everest	1948	6377304.063	6356103.039	300.8017	
Everest	1956	6377301.243	6356100.228	300.8017	
Everest	1956	6377301,243	6356100,228	300,8017	Indien
Fisher mod.	1960	6378155.000	6356773.320	298,3000	
WGS60	1960	6378165,000	6356783,287	298,3000	Global
Hough	1960	6378270,000	6356794,343	297,0000	
Everest mod.	1964	6377304,063	6356103,039	300,8017	West Malaysia, Singapur
Australian Nat.	1966	6378160,000	6356774,719	298,2500	Australien
WGS66	1966	6378145,000	6356759,769	298,2500	USA
Everest Def.	1967	6377298,556	6356097,550	300,8017	Ost Malaysia, Brunei
New International	1967	6378157,500	6356772,200	298,2496	
GRS67	1967	6378160,000	6356774,516	298,2472	Global
Fisher	1968	6378150,000	6356768,337	298,3000	
SAD69	1969	6378160,000	6356774,719	298,2500	Südamerika
Everest	1969	6377295,664	6356094,668	300,8017	Malaysia, Singapur
WGS72	1972	6378135,000	6356750,520	298,2600	USA
Indonesien	1974	6378160,000	6356774,504	298,2470	
ATS77	1977	6378135,000	6356750,305	298,2570	
GRS80	1980	6378137,000	6356752,314	298,2572	Global
WGS84	1984	6378137,000	6356752,314	298,2572	Global, GPS
SGS85	1985	6378136,000	6356751,302	298,2570	
IERS	1989	6378136,000	6356751,302	298,2570	Global
IERS	2003	6378136,600	6356751,900	298,2564	Global

Tab. 3: Parameter von Rotationsellipsoiden (Auswahl)

Bevor die Parameter logarithmisch präsentiert werden, gilt es einige Zusammenhänge bzw. Relationen wiederzugeben.

Ausgehend von

sind

$$f = \frac{a-b}{a} \quad die \; Abplattung$$

$$e^{2} = \frac{a^{2}-b^{2}}{a^{2}} \quad die \; 1. \; numerische \; Exzentrizit ät$$

$$e^{i^{2}} = \frac{a^{2}-b^{2}}{b^{2}} \quad die \; 2. \; numerische \; Exzentrizit ät$$

$$n = \frac{a-b}{a+b} \quad die \; 1. \; Hilfsgröße$$

$$m = \frac{a^{2}-b^{2}}{a^{2}+b^{2}} \quad die \; 2. \; Hilfsgröße$$

(22)

Zwischen diesen fünf Größen lassen sich durch Auflösung nach *b* und Gleichsetzen verschiedene Relationen herstellen. Die sich dabei ergebenden Reihen konvergieren wegen *n*, *m*, *f* und $e^2 < 1$ für das Ellipsoid sehr schnell.

$$b = a(1-f) = a\frac{1-n}{1+n}$$

$$b^{2} = a^{2}(1-e^{2})$$

$$e^{2} = 2f - f^{2}$$

$$f = 1 - \sqrt{1-e^{2}} = \frac{e^{2}}{2} + \frac{e^{4}}{8} + \frac{e^{6}}{16} + \frac{5 \cdot e}{128} + \dots$$

$$f = \frac{2n}{1+n} = 2n - 2n^{2} + 2n^{3} - 2n^{4} + \dots$$

$$n = \frac{f}{2-f} = \left(\frac{f}{2}\right) + \left(\frac{f}{2}\right)^{2} + \left(\frac{f}{2}\right)^{3} + \left(\frac{f}{2}\right)^{4}$$

$$e^{2} = \frac{4}{(1+n)^{2}} = 4n - 8n^{2} + 12n^{3} - 16n^{4} + \dots$$

$$n = \frac{1 - \sqrt{1-e^{2}}}{1+\sqrt{1-e^{2}}} = \frac{e^{2}}{4} + \frac{e^{4}}{8} + \frac{5e^{6}}{64} + \frac{7e^{2}}{128} + \dots$$

$$\delta = \frac{e^{2}}{1-e^{2}} = e^{2} + e^{4} + e^{6} + e^{8} + \dots$$

$$m = \frac{e^{2}}{2-e^{2}} = \frac{e^{2}}{2} + \frac{e^{4}}{4} + \frac{e^{6}}{8} + \frac{e^{8}}{16} + \dots$$

$$m = \frac{2n}{1+n^{2}} = 2n - 2n^{3} + 2n^{5} - \dots$$

$$m = f + \frac{f^{2}}{2} - \frac{f^{4}}{4} - \frac{f^{5}}{4} - \dots$$

$$1 - e^{2} = \frac{1-m}{1+m} = \left(\frac{1-n}{1+n}\right)^{2} = (1-f)^{2} = \frac{1}{1+\delta}$$

(23)

Bessel hat seine ermittelten Erdparameterwerte für die beiden Halbachsen in Toisen angegeben, einem französischen Längenmaß. 1 Toise entsprach exakt 1,9490363098246 m und wurde in Frankreich aufgrund der Meridianvermessungen etwa 1735 eingeführt und 1766 am Grand Chatelet durch zwei Markierungen im Stein sogar materiell realisiert. Zusätzlich gab Bessel den Logarithmus der beiden Halbachsen an.

Parameter	Werte	Logarithmus
a =	3272077,14	6.5148235337
b =	3261139,33	6.5133693539
f =	1:299,1528	
n =	0,001674184767	7.2238033861-10

Der Übergang zum Metermaß wurde mit dem Verwandlungslogarithmus

0.28981992994

vorgenommen, so dass die beiden Halbachsen abschließend definiert sind.

Parameter	Werte	Logarithmus
a =	6377397,15500	6.8046434637
b =	6356078,96325	6.8031892839

Helmert [1] führt dazu aus, dass die an dieser Stelle im Hinblick auf die wirkliche Genauigkeit sehr weit gehende Schärfe gewollt ist, denn die Ellipsoidparameter treten hier als Fundamentalzahlen auf und sind allen weiteren Berechnungen zugrunde zu legen. Die weiteren Größen ergeben sich dann nach [5] zu.

Parameter/Größe	Wert	Logarithmus
$e^2 =$	0,006674372096	7.8244104149-10
f =	0,003342773114	7.5241069005-10
$\dot{m} =$	0,003348360149	7.5248321645-10
δ =	0,006719218662	7.8273187745-10
$n^2 =$	0,00000280289463	
$n^3 =$	0,00000000469256	
$n^4 =$	0,00000000000786	
$e^4 =$	0,000044547243	
$e^{6}=$	0,000000297325	
$e^8 =$	0,00000001984	
$e^{10} =$	0,00000000013	
$f^2 =$	0,000011174132	
$f^3 =$	0,00000037352	
$f^4 =$	0,00000000125	
$m^2 =$	0,000011211516	
$m^3 =$	0,00000037540	
$m^4 =$	0,00000000126	
2(1-f) =		9.99709164046-10
l+m=		0.00145174521
1-m=		9.99854338566-10
l+n=		0.00072648124
1-n=		9.99927230147-10

Diese Zahlen wurden einerseits mit Anwendung des *Thesaurus logarithmorum completus* von *G. Vega (Leipzig 1794)* berechnet, andererseits zur Kontrolle durch direkte abgekürzte Multiplikation und Division und mit teilweiser Benutzung der Rechenmaschine von *Thomas.* Die in der Zusammenstellung aufgeführten letzten 11-ziffrigen Logarithmen wurden direkt durch Reihenentwicklung gefunden. Diese Zahlen bildeten die Grundlage für alle weiteren Berechnungen auf dem Ellipsoid im Rahmen der höheren Geodäsie.

Dies führt im nächsten Schritt zur Definition von Koordinaten auf dem Ellipsoid. Die auf die Hauptachsen des Rotationsellipsoids bezogene Mittelpunktsgleichung

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$$
(24)

wird zur Festlegung von Punkten auf der Ellipsoidoberfläche geodätisch selten benutzt. Statt dessen wird Parameterdarstellungen der Vorzug gegeben. Die ältesten und am häufigsten verwendeten Parameter sind die geographische Länge und die geographische Breite (oft auch als λ und φ bekannt), die beide als Winkel definiert sind, wie in der Abbildung 26.2 dargestellt.

Abb. 26.2: Geographische Koordinaten auf dem Ellipsoid

Die geographische Breite eines Punktes P ist der Winkel B, den die in P errichtete Flächennormale mit der Äquatorebene bildet. Die geographische Länge ist der Winkel L, den die Meridianebene des Punktes P mit der Ebene eines festgelegten Anfangsmeridians (z. B. Greenwich) bildet. Sie kann aber auch auf einen dem Vermessungsgebiet näher liegenden Haupt- oder Nullmeridian (L=0, L_0) bezogen werden. Man rechnet dann mit einem geographischen Längenunterschied. Der im Punkt Pgebildete Winkel einer Oberflächenkurve mit dem Meridian wird auch als Azimut Abezeichnet. Damit ergeben sich aus der Figur in der Abbildung 26.2 folgende Bezeichnungen:

$$x, y, z = Hauptachsen des Rotationsellipsoids$$

 $N = Nordpol$
 $OE = große Halbachse a$
 $ON = kleine Halbachse b$
 $B = 0 : Äquator (B_0)$
 $L = 0 : Haupt- oder Nullmeridian (L_0)$
 $L_1 = const.: Meridian zu P_1$
 $B_1 = const.: Breitenkreis zu P_1$
 $l_1 = L_1 - L_0$
 $B_1, B_2 = geographische Breite der Punkte P_1 und P_2$
 $L_1, L_2 = geographische Länge der Punkte P_1 und P_2$
 $A = Azimut von P_1, P_2$

Nachdem die Orientierung auf dem Ellipsoid geklärt ist, können vielfältige Berechnungen durchgeführt werden. Zur weiteren Vereinfachung werden i.d.R. sphärische Hilfsflächen (z. B. Kugel) und spezielle logarithmische Tafeln von verschiedenen Autoren bereitgestellt, die bei den Bestimmungen der Koordinaten in der Meridianellipse nötig sind. Die Rechnungen wurden i. d. R. mit 7-ziffrigen Logarithmen oder Logarithmen mit 10 Dezimalen durchgeführt. Bremiker hat dazu in seiner Ausgabe von Vegas 7-ziffrigen Logarithmen ausgeführt, dass zwar die 10. dezimale der Logarithmen der Zahlen im Thesaurus log. sicher, aber nicht die der trigonometrischen Funktionen, wo Fehler bis zu 4 Einheiten vorkommen können. Ferner hat Bremiker in seinen Studien über höhere Geodäsie spezielle Tafeln der Logarithmen für bestimmte Ausdrücke mit 8 Dezimalen bei diesen Berechnungen entwickelt. Diesen Weg beschritten auch Albrecht und Börsch, um die Rechnung zu vereinfachen. Helmert fügte seinem Buch [1] eine Logarithmentafel für einen Rechenausdruck mit 10 Dezimalen bei. Insgesamt geht die Nutzung je nach Rechenterm von 5 bis 10-stelligen Logarithmen. Für die trigonometrischen Funktionen im Zusammenhang mit einer Reihenentwicklung wird die Verwendung einer 10-stelligen Tafel empfohlen.

Für die Berechnung von Dreiecken und Dreiecksnetzen auf der Kugel ist die Verwendung logarithmischer Tafeln in der Entwicklungsgeschichte der Landesvermessung nicht wegzudenken.

<u>Literatur</u>

- [1] Helmert, F. R.: Die mathematischen und pysikalischen Theorieen der Höheren Geodäsie, Einleitung und I. Teil: Die mathematischen Theorieen, Zweite Auf lage, B. G. Teubner Verlagsgesellschaft Leipzig, 1962
- Helmert, F. R.: Die mathematischen und pysikalischen Theorieen der Höheren Geodäsie, II. Teil: Die pysikalischen Theorieen, mit Untersuchungen über die mathematische Erdgestalt auf Grund von Beobachtungen, Zweite Auflage, B.
 G. Teubner Verlagsgesellschaft Leipzig, 1962
- [3] Großmann, W.: Geodätische Rechnungen und Abbildungen in der Landesvermessung, zweite, erweiterte Auflage, Verlag Konrad Wittwer, Stuttgart, 1964
- [4] Jordan, W.: Handbuch der Vermessungskunde, Zweiter Band, Feld- und Land-Messung, 3. Auflage, J. B. Metzlersche Verlagsbuchhandlung, Stuttgart, 1888
- [5] Resnik, Boris und Bill, Ralf: Vermessungskunde für den Planungs-, Bau- und Umweltbereich, Herbert Wichmann Verlag, Heidelberg, 2000
- [6] Witte, Berthold und Schmidt, Hubert: Vermessungskunde und Grundlagen der Statistik für das Bauwesen, 4. Auflage, Konrad Wittwer Verlag, Stuttgart, 2000

Anschrift des Verfassers:

Rainer Heer c/o Leibniz Universität Hannover Geodätisches Institut Nienburger Straße 1 30167 Hannover