Small Adders Part 2
1 Small Adders Part 2
Bob OtnesTeil 2 des Vortrags, gehalten beim 2. Greifswalder Symposium zur Entwicklung der Rechentechnik 12. - 14. September 2003, erschienen in Girbardt/Schmidt 9-2003
Im Rechnerlexikon mit freundlicher Genehmigung des Verfassers.
2 Small Adder Classification System - Taxonomy
I have spent some time in attempting to create a taxonomy for small adders. I am currently restricting myself to this subset of calculation mainly from a lack of the kind of knowledge necessary to handle the myriad of three- and four-function machines. Is a taxonomy necessary? I think that the answer is yes. The reason is that there are many machines that appear to be similar that have very different internal mechanisms. These differences tend to show up in the method of carrying from one digit to another, but are not limited to this.
0. Abaci: Are of two forms: tables with lines upon which the position of counters indicates a numerical value, or frames with beads sliding on rods.
0.1 - Counting Tables using Jetons, Counters, etc.
0.2 - Sampam, Saroban and Shotky
1. Column Adders:
Add one column at a time, putting the least significant sum digit at the bottom and the carry at the top of the left column. While column adders can have two or more result digits, you can only add into the rightmost digit, and then generally only with the integers one through nine. There are exceptions to this: the Centigraph only has five keys, and the Sebastian seems to change in units of five.
1.1 - Dial:
- Addachine
- Sebastian 1898 (Patent:US602918)
- Stephenson 1873 (Patent:US137107)
- Troncet dial adder
1.2 - Chain:
- Shattuck and Thorn 1882 (USPs Patent:US268135 and Patent:US349459)
1.3 - Key - Generally Nine Key
- Adder 1902 (Patent:GB190224868; Patent:US786839 of 1905)
- Adix 1903
- Bouchet 1882 (Patent:US251823; Patent:US314561 of 1885)
- Centigraph 5 key 1891 (Patent:US453778)
- Cram 1877 (Patent:US193853)
- Graber 1911 (Patent:US1002262)
- Lindholm 1886 (Patent:US343770)
- Spaulding 1884 (Patent:US293809)
1.4 - Band
- Perfection Self-Adding Ruler 1895 (Patent:US532241)
1.5 - Spiral and Helix
- Adal/Adall Spiral 1907 (Patent:GB190705779)
- Hicks' Helix 1894 (Patent:US528596)
1.6 - Push Down "Pencil"
- Smith and Potts' Adding Pencil 1876 (USPs Patent:US175775 and Patent:US180949)
2. Row Adders:
Add row by row, one row at a time. Must be able to add two or more columns at a time. There is a potential overlap here. For example, a row adder can be used as a column adder, so that all row adders are also column adders. Capacity is the consideration. The Addachine and Hart are somewhat close in design; however, the larger Hart can add two columns at a time, compared to only one for the Addachine.
2.1 - Dial
Usually have three or more dials and corresponding result digits; numbers
can be added into any one of the dials
2.1.1 - Dials in a Row
2.1.1.1 - Manual Carry and No Clearing Mechanism
- ADCO (Associated Distributing Co.)
- Addist - Cardboard, visual cue indicates carry
2.1.1.2 - Assisted Manual Carry and No Clearing Mechanism
- Clabor 1906
- Bair Adder 1928 (Patent:US1940069)
2.1.1.3 - Hardware Carry Using Gears
2.1.1.3.1 - No Clearing Mechanism, No Subtraction
- Schickard
- Pascaline
- Bonham and Schram 1905 (Patent:US845747)
- Calculator (Pangborn - same as Bonham and Schram)
- Cordingly 1907 (Patent:GB190715435)
- Curran US ?
- Quixsum 1923 (Patent:US1497570)
- Lightning 1925 (Patent:US1574249)
- Ken+Add
- SHOP-N-ADD
- Smallwood - Same as early Lightning
2.1.1.3.2 - No Clearing Mechanism, With Subtraction
- Groesbeck 1870 (Patent:US100288) Two sets of dials
- Kes-Add 1948 (Patent:US2450668)
- Ray 1922 (Patent:US1410507) Early reversible
2.1.1.3.3 - With Clearing Mechanism and No Subtraction
- Lightning (later)
2.1.1.3.3 - With Clearing Mechanism and Subtraction
- Addometer
- Lightning 1945 (?) (final models from Los Angeles)
- Dial-A-Matic (Sterling Plastics)
2.1.1.4 - Hardware Carry Using Springs
2.1.1.4.1 - No Clearing Mechanism
- Roth (French, but GBP 9,616 of 1843)
- Webb 1868 (Patent:US75322) and 1889 (Patent:US414959 and Patent:US414335)
- Beach 1906 (Patent:US808893)
- Early Calcumeter 1901 (Patent:US689255)
2.1.1.4.2 - With Clearing Mechanism
- Later Models of Calculmeter 1908 (Patent:US897688)
2.1.2 - Concentric Dials
2.1.2.1 - Full Hardware Carry
- Hatfield 1854 (Patent:US11726)
- Hart 1878 (Patent:US199289)
- Brical 1905 (Patent:GB190512088A)
2.2 - Line
2.2.1 - Rectilinear Lines (both Horizontal and Vertical); Manual Carry
- Perrault 1680
- Young 1849 (Patent:US6609 and Patent:US21921)
- Fowler, including the Universal 1863 (Patent:US39222 and Patent:US432266)
- Locke Adder 1901 (Patent:US689680 and Patent:US779088)
- McCarty 1904 (Patent:US751670)
2.2.2 - Vertical Lines
2.2.2.1 - Slides
2.2.2.1.1 - Kummer - Plain
- Little Wonder
2.2.2.1.2 - Kummer - Double Register Subtraction
- Kummer 1847 (?) 1869 (Patent:US90275)
- Troncet 1889 ( FR197579 30 avril, 1889 (never published as fees were not paid.)
2.2.2.1.2 - Kummer - With Clearing
- Baby
- Calculator
- Compact Calculator
- Kalkometer
- Magic-Brain Calculator
- Midget Adding Machine
- Pocket Calculator
- Tom Thumb
- Ve-Po-Ad
2.2.2.1.3 - Kummer - Shifting Plate Subtraction with Clearing
2.2.2.1.4 - Kummer - Double Panel Subtraction with Clearing
2.2.2.1.5 - Kummer - Hardware Complementary Subtraction
2.2.3 - Chain Input - Full Hardware Carry and Clearing Mechanism
- Arithstyle 1899 (Many patents: eg. Patent:US624788 and GBP 10,237)
- Gem 1904 (Patent:US753586, Patent:US861342, Patent:US847759 and Patent:US1178227)
2.2.4 - Bands and Ribbons
- Webb ribbon 1891 (Patent:US465120)
- Basset
2.2.5 - Racks
- Rapid Computer 1892 (Patent:US482312)
- Comptator 1909
- S&N 1910
- BUG 1920
- Midget Adder 1911 (Patent:US999011)
2.1 Copyright
Alle Rechte beim Verfasser
Please do not copy or reprint
Dieses Material ist Bestandteil eines Buches von Bob Otnes, das voraussichtlich noch im Jahre 2004 erscheinen wird.
Diese Seite ist geschützt. Sie darf nur
vom Autor oder einer beauftragten Person verändert werden.
Falls Sie mit dem Inhalt nicht einverstanden sind,
machen Sie bitte einen Eintrag bei der Diskussion und schicken dem Autor eine Mail.